PRACTICE MIDTERM 2 (VOJTA) - BRIEF SOLUTIONS

PEYAM RYAN TABRIZIAN

$$
\begin{aligned}
& \text { (1) (a) (i) Let } y=(\sin (x))^{x} \\
& \text { (ii) } \ln (y)=x \ln (\sin (x)) \\
& \text { (iii) By l'Hopital's rule: } \\
& \lim _{x \rightarrow 0^{+}} x \ln (\sin (x))=\lim _{x \rightarrow 0^{+}} \frac{\ln (\sin (x))}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{\cos (x)}{\sin (x)}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}-x^{2} \frac{\cos (x)}{\sin (x)}=\lim _{x \rightarrow 0^{+}}-x(\cos (x)) \frac{x}{\sin (x)} \\
& \text { However, } \lim _{x \rightarrow 0^{+}} \frac{x}{\sin (x)}=1 \text { (by l'Hopital's rule again), } \lim _{x \rightarrow 0^{+}} \cos (x)= \\
& 1 \text {, and } \lim _{x \rightarrow 0^{+}}-x=0 \text {, whence } \lim _{x \rightarrow 0^{+}}-x(\cos (x)) \frac{x}{\sin (x)}=0 \times \\
& 1 \times 1=0 \\
& \text { (iv) We just found that } \lim _{x \rightarrow 0^{+}} \ln (y)=0 \text {, so } \lim _{x \rightarrow 0^{+}} y=e^{0}=1 \\
& \text { (v) Hence } \lim _{x \rightarrow 0^{+}}(\sin (x))^{x}=1 \\
& \text { (b) } \begin{array}{l}
0 \text { (this limit is of the form } 0^{\infty}=0 \text {, which is not an indeterminate form at }
\end{array} \\
& \text { (c) By l'Hopital's rule: } \\
& \lim _{x \rightarrow \infty} \frac{\cosh ^{-1} x}{\ln x}=\lim _{x \rightarrow \infty} \frac{\frac{1}{\sqrt{x^{2}-1}}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}-1}}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}} \sqrt{1-\frac{1}{x^{2}}}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1-\frac{1}{x^{2}}}}=1 \\
& \text { I used the fact that } \sqrt{x^{2}}=|x|=x(\text { since } x>0) \\
& \text { (2) (a) We know that: } \lim _{t \rightarrow 0} \frac{\sin (t)}{t}=1 \text {. In particular, letting } t=\sin (x) \text {, we get: } \\
& \lim _{x \rightarrow 0} \frac{\sin (\sin (x))}{\sin (x)}=1 \text {. And letting } t=\pi x \text {, we get: } \lim _{x \rightarrow 0} \frac{\sin (\pi x)}{\pi x}= \\
& \text { 1. Using those two facts and multiplying the numerator by } \frac{\sin (x)}{\sin (x)} \text { and the } \\
& \text { denominator by } \frac{\pi x}{\pi x} \text {, we get: } \\
& \lim _{x \rightarrow 0} \frac{\sin (\sin (x))}{\sin (\pi x)}=\lim _{x \rightarrow 0} \frac{\frac{\sin (x)}{\sin (x)} \sin (\sin (x))}{\frac{\pi x}{\pi x} \sin (\pi x)}=\lim _{x \rightarrow 0} \frac{\sin (x) \frac{\sin (\sin (x))}{\sin (x)}}{\pi x \frac{\sin (\pi x)}{\pi x}}=\lim _{x \rightarrow 0} \frac{\sin (x) \times 1}{\pi x \times 1}=\frac{1}{\pi} \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\frac{1}{\pi} \\
& \text { (b) } \frac{1}{\sqrt{1-x^{2}}} \\
& \text { (c) }-\sin \left(e^{x^{2}}\right) e^{x^{2}}(2 x)
\end{aligned}
$$

Date: Thursday, March 24th, 2011.
(3) (i) $y=x^{e^{x}}$
(ii) $\ln (y)=e^{x} \ln (x)$
(iii) $\frac{y^{\prime}}{y}=\frac{e^{x}}{x}+e^{x} \ln (x)$
(iv) $y^{\prime}=x^{e^{x}}\left(\frac{e^{x}}{x}+e^{x} \ln (x)\right)$
(4) $f^{\prime}(x)=0$ tells us that f is constant on each piece of its domain! Now because $0.5 \in(-\infty, 0)$ and $f(0.5)=3$, we learn that $f(x)=3$ on $(-\infty, 0)$. In particular, $\lim _{x \rightarrow-\infty} f(x)=3$. Similarly, $3 \in(2, \infty)$, and $f(3)=7$, so $f(x)=7$ on $(2, \infty)$. In particular, $\lim _{x \rightarrow \infty} f(x)=7$
(5) (i) See attached figure
(ii) We want to calculate the perimeter of the playground, which is $3 w+2 l$. However, we also know that the total area, $2 l w=600$, so $w=\frac{300}{l}$, whence we get $f(l)=\frac{900}{l}+2 l$.
(iii) The only constraint is $l>0$
(iv) $f^{\prime}(w)=\frac{-900}{w^{2}}+2=0 \Leftrightarrow w=\sqrt{450}=15 \sqrt{2}$
(v) It is easy to see that $f^{\prime}(w)<0$ for $w<15 \sqrt{2}$ and $f^{\prime}(w)>0$ for $w>15 \sqrt{2}$, so by the first derivative test for absolute extreme values (section 4.7), $w=$ $15 \sqrt{2}$ is an absolute minimizer of f.
(vi) So the optimal dimensions of the playground are $w=15 \sqrt{2}$ and $2 l=\frac{600}{w}=20 \sqrt{2}$ (see figure)
Note: If you thought that $l w=600$, that's fine too, the question was kind of ambiguous. In this case, you should get $2 l=30 \sqrt{2}$ and $w=20 \sqrt{2}$

1A/Practice Exams/Fence.png

(6) (D) Domain = All nonzero real numbers
(I) No x or y intercepts
(S) No symmetries
(A) - HA: $\lim _{x \rightarrow \pm \infty} f(x)=1$, so $y=1$ is a H.A. at $\pm \infty$.

- Because of this, there are no slant asymptotes
- VA: $\lim _{x \rightarrow 0^{+}} f(x)=\infty, \lim _{x \rightarrow 0^{-}} f(x)=0$, so there is a V.A. at $x=0$.
(I) $f^{\prime}(x)=e^{\frac{1}{x}}\left(\frac{-1}{x^{2}}\right)<0$, so f is decreasing on $(-\infty, 0)$ and on $(0, \infty)$; No local maximums/minimums.
(C) $f^{\prime \prime}(x)=e^{\frac{1}{x}}\left(\frac{1}{x^{4}}+\frac{2}{x^{3}}\right)=e^{\frac{1}{x}}\left(\frac{1+2 x}{x^{4}}\right)$, so f is concave down on $\left(-\infty,-\frac{1}{2}\right)$ and concave down on $\left(-\frac{1}{2}, \infty\right)$; Inflection point $=\left(-\frac{1}{2}, e^{-2}\right)$
The resulting graph looks somewhat like this:
1A/Practice Exams/Vojtagraph.png

